

	/		/
School Name	Student Name		Group
	/ DD-MM-YY	YY /	/
Site	Date	Time	Recent Weather Conditions

INTRODUCTION

Background

In Hong Kong, we do not have large freshwater habitats like rivers or lakes, but we do have small streams, ponds, reservoirs, abandoned paddy fields and marshy areas distributed throughout the territory. Many freshwater systems have been polluted by agricultural, industrial and domestic wastes. It is said that natural water systems free from pollution are getting less and less.

Τ

Aims and **Objectives**

•To appreciate the wonders of the living world. •To familiarize structure, flora and fauna in a freshwater stream community. •To observe, compare and contrast the ecology of different freshwater stream habitats.

Equipment

For plant and animal sampling						
Aquarium net	×2					
Brush	×2					
Clip board	×1					
Quadrat	×2					
Spoon	×2					
Тгар	×1					
Plastic bag	×2					
Plastic basket	×2					
Plastic box	×1					
Plastic tray	×2					
Plastic vial	×6					
Fresh water streams identification ki	t ×2					
Life buoy with a rope	(Share)					

For measurement of physical factors

Compass	×1
Light meter	×1
pH cum thermometer	×1
Dried & weighted filter paper	×2
Filter funnel	×1
Measuring tape	×1
Metre rule	×1
Sampling bottle	×2
Stop watch	×1
Table tennis ball	×1
Towel	×1

Remarks

- · Dress in shorts and canvas shoes with adequate tread. Sandals are not recommended. Be careful of broken glass and abandoned construction material etc.
- Walk slowly and try footing for the stability of substratum. Be careful of loose gravel and slippery rock surface.
- Never chase after any fast-moving animals to avoid accidents and habitat destruction.
- Never pollute/damage the environment in all sense. Minimize trampling.
- · Minimize disturbance to the local people.
- Team leader should organize members to work in a serious and efficient way. Members should co-operate with the leader.

Since time is limited, you should work efficiently. If you do have extra time, you are highly recommended to carry out your own investigations, provided that it is safe to do so.

FIELD WORK

Choose 10m of the stream and Draw a sketch map top view of the surrounding area on Figure 1, indicating: •your position in the study site (with a compass) ; •direction of stream flow ; •vegetation ;

•breadth, any dam/boulders/trees/fallen log/submerged log etc. ; •other particulars of interest. In order to proceed the sampling and measurement works at the same time, divide your group into 2 teams. One is responsible for biotic investigation while the other is to take abiotic measurement. However it is more important to understand the whole picture, so try to get involved in the work of your partners.

Figure 1. Site profile -	Top view of the study area			
	Field Site			
—————————————————————————————————————				
			5	
— 112:32:				
Site A	Site B		Pa	st Weather

FIELD WORK

	Record data on Table 1&2	+ Do not drop the equipment into the water
2	2.1. Water sampling	Do it prior to other studies!
_	Carefully collect 2 water samples by sampling bottles (500ml) provided (1 filtered and 1	Avoid generating air hubbles. Invert your
Study of	non-filtered). Mark the sampling site on the sketch map.	bottle to check against trapped air and
Abiotic Factors		lounago.
	2.2. Stream substratum	Let's think
	Use your naked eyes to identify the types of the stream substratum.	Where should the bottle be placed during facing the water flow?
		A. In front of your body. OR
	2.3. Dimensions of field area	B. Behind your body.
	Measure the maximum and minimum width of the area of study by a measuring tape.	Which direction should the bottle mouth face?
		A. Against the flow direction. OR
		B. As the flow direction.
	2.4 Abiotic factors measurement in quadrants and traps	
	Use ruler to measure water depth of quadrats and traps.	
	Use lux meter to measure light intensity at the surface (S) and the bottom (B) of the	
	stream, and calculate the light transmittance.	
	Use pH meter cum thermometer to measure water temperature of quadrats and traps.	
	Place ping pong ball at one end of the quadrats or meter ruler, and record the time	
	needs for the ball to flow to another end, and calculate the speed of flow of stream.	

Table 1.

Texture of substratum	Gravel / Coarse sand / Fine sand / Mud / Others
Distribution of substratum	Homogeneous / Heterogeneous / Patchy / Others
Water Colour	Clear / Less Clear / Brown / Black
Smell	None / Some / Moderate / Strong
Floating matters	None / Some / Plentiful / Abundant

Table 2.

Sample		Light In	Light Intensity (lux)			Drifting time	
	Depth (m)	Above water surface (S)	10cm under surface (B)	transmission (%)	Temp (°C)	of the ping pong (s)	Current Speea (ms ⁻¹)
Sampling Area	1						
Sampling Area	2						
Sampling Area	13						
Sampling Area	. 4						
Trap 1							
Trap 2							
The widest		The narrowest		рН		DO (ppm)	
breadth (m)	ļ	breadth (m)			I	- u-v ,	

FIELD WORK

3 Study of Biotic Factors

Search and identify freshwater plants at different microhabitats. Observe any special adaptive features and collect samples with plastic bags. Also collect a full vial of decaying leaves for later investigation.

3.2. Animal sampling (record data on Table 3)

3.1. Plant and algae sampling

Randomly select 3 sampled area by a 0.5mX0.5m quadrats.

Collect, identify and count the animals at site with the help of nets, plastic tray and brushes. Place the trap in the stream for 30 minutes, and identify and count the animals trapped inside.

Table 3.

	Abundance								
Species Name	Sampling Area 1	Sampling Area 2	Sampling Area 3	Sampling Area 4	Trap 1	Trap 2			
Mayfly Nymph									
Damselfly Nymph									
Dragonfly Nymph									
Stonefly Nymph									
Caddisfly Larva									
Water Penny									
Bloodworm									
Mosquito Larvae									
Pond Skaters									
Long-armed Shrimps									
Predaceous Chub									
White Cheek Goby									
Sharphead Sleeper									
Snail									
OTHERS									
OTHERS									
OTHERS									

 \star Be careful of allergic plant species.

★Perform animal sampling after finishing all other works.

LABORATORY WORK

Equipment

	250ml beaker	×1	Test tube rack	×1
	E. coli detection dish	×1	Wash bottle	×1
	Compound microscope	×1	Slides	(Share)
	Cuvettes	×2	Cover slips	(Share)
	Dropper	×1	Electronic Balance	(Share)
	Evaporating dish	×1	Oven	(Share)
	Forceps	×2	Heat resistant gloves	(Share)
	Glass rod	×1	Dissolved Oxygen meter	(Share)
	Petri dishes	×5	70% Alcohol	(Share)
	Stereomicroscope	×1	Spectrophotometer	(Share)
	1 ml syringe	×1	Refractometer	(Share)
	Test tube	×2		

Chemicals

Solution A (Ammonium molybdate / $\rm H_2SO_4)$	(Share)
Solution B (5% Stannous chloride)	(Share)
Solution C (Nessler's reagent)	(Share)
Chemical Oxygen Demand detection kit	×1

4.1. Plant and animal identificationUse the reference books, photographs and stereomicroscope provided to identify specimens collected from the streams.

4.2. Microscopic organisms in algal mass and plant debris for Use forceps to tear a decaying leaf into small pieces. Put the sample onto a slide, observe and record any protozoan and other microscopic organisms present under a compound microscope.

★ Transfer the animals in the glass chamber specified after identification and clean up the vials.

★ Put the used slides and cover slips at respective beaker/vial specified.

Remarks

•The equipment/chemicals are rather expensive. Please handle with care and consult technician when necessary. •Discard all reagents/solutions in the chemical waste bottle.

LABORATORY WORK

Table 4. Water sample analysis

Salinity (g/100g)	
NH₄⁺ (ppm)	
PO ₄ ³⁻ (ppm)	
TSS (mg/L or ppm)	
n Dissolved Oxygen (mg/L)	
n E. Coli. Testing (cfu/100ml)	
n COD (ppm)	

SUMMARY

Discussions and Conclusions

- *After pooling all information with other groups, can you draw any conclusions on our study?
- ★Which factor(s) do you think is/are limiting to the community in the stream? Why?
- ★Construct a cross sectional profile of your study area after integrating all your abiotic and biotic information.
- \star Examine the external features of the animals collected, how do they adapt to the environment with respect to their:
- particular microhabitats (beneath stones/free-swimming/on water surface etc.)
- feeding habits (omnivorous/detritivorous/carnivorous/herbivorous etc.)
- feeding relationships (competition / predation / commensalism / mutualism / parasitism etc.)
- ★Based on the organisms collected or observed, try to construct food chains/web to show the trophic levels of these organisms.
- ★ Draw graphs to show the changes in abiotic factors in different locations along the streams. Do you think the streams have been polluted? Why?
- \star State the limitations and drawbacks of the investigation. Suggest any improvements for further studies.

References

- 1. 杜德俊(2003)山澗(香港野外圖鑑2),香港:香港大學生態學及生物多樣性學系,萬里機構出版有限公司
- 2. 許狄思、費嘉倫編著,何迪媛譯(1989)香港動物原色圖鑑,香港:香港政府印務局
- 3. 文鍚禧編著(1993)香港淡水魚類,香港:香港市政局
- 4. 韓國章(1978)香港淡水植物,香港:香港市政局
- 5. Hodgkiss, I.J., (1976) Practical Aquatic Ecology in Hong Kong. Hong Kong: The Curriculum Development Editorial Board, E.D., H.K.
- 6. Dudgeon, D. and Corlet, R., (1994) Hills and Streams. Hong Kong: Hong Kong University Press

POLLUTION INDEX

Table 1: Physical Factors Analysis (4 point Scale)

Assessment Score Physical Factors	0	1	2	3
Water Colour	Clear	Less Clear	Brown	Black
Smell	None	Some	Moderate	Strong
Floating matters	None	Some	Plentiful	Abundant
Temp. different from other groups (°C)	< 1	1 - 1.5	1.5 - 2	> 2
Mean rates of light transmission	> 70%	41% - 70%	10% - 40%	< 10%

Mean Assessment Score (A) on Physical Factors Analysis	Mean Assessment Score (A) on Physical Factors Analysis	
--	--	--

Table 2: Chemical Factors Analysis (4 point Scale)

Assessment Score Chemical Factors	0	1	2	3
Dissolved Oxygen (ppm or mg/l)	> 7.0	5.1 - 7.0	3.0 - 5.0	< 3.0
рН	6.0 - 7.0	5.0 - 5.9 / 7.1 - 8.0	4.0 - 4.9 / 8.1 - 9.0	< 4.0 / > 9.0
Total Suspended Solid (ppm or mg/l)	< 20	20 - 35	35 - 50	> 50
Salinity (%)	< 3	3 - 6	7 - 10	> 10
NH₄⁺ (ppm or mg/l)	< 2.1	2.1 - 5.0	5.1 - 7.0	> 7.0
PO ₄ ³⁻ (ppm or mg/l)	< 3.0	3.0 - 6.0	6.1 - 9.0	> 9.0
COD	< 5	5 - 13	14 - 50	> 50

|--|

Table 3: Micro-organism analysis (4 point Scale)

Assessment Score	0	1	2	3
Escherichia coli (c.f.u./100ml)	< 180	181 - 400	401 - 610	> 610

|--|

Table 4: Biological Indicators

Organism Group	Indicator Species		
i	Mayfly nymphs Stonefly nymphs Dragonfly nymphs	Water pennies Snails with operculum Microscopic algae (Desmids, Hydrodictyon)	
ii	Caddisfly larvae Mosquito larva Snails without operculum	Freshwater shrimps Green algae (Cladophora)	
iii	Leeches Water louse (Asellus spp. iii Blood worm (Chironomus larvae) Green algae (Spirogyra, Oscillatoria, Protozoa (Paramecium, Vorticella)		
iv	Sludge worm (Tubifex)	Sewage fungi	

Table 5: Biological Factors Analysis (4 point Scale)

Assessment Biotic Factors Score	0	1	2	3
Indicator Organisms	Group i Dominant + ii,iii,iv	Group ii Dominant + iii,iv	Group iii Dominant + iv	Group iv or no organisms found
Mean Assessment Score (D) on Biological Factors Analysis				

Table 6: Degree of Pollution

Average Assessment Score (A), (B), (C), (D)	Pollution Magnitude
0.00 - 0.75	Clean
0.76 - 1.50	Slightly Polluted
1.51 - 2.25	Moderately Polluted
2.26 - 3.00	Severely Polluted

Note: Assumed the Physical, Chemical and Biological factors are equally important.